Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Biosci ; 2000 Mar; 25(1): 33-40
Article in English | IMSEAR | ID: sea-110721

ABSTRACT

PTP-S2 is a tyrosine specific protein phosphatase that binds to DNA and is localized to the nucleus in association with chromatin. It plays a role in the regulation of cell proliferation. Here we show that the subcellular distribution of this protein changes during cell division. While PTP-S2 was localized exclusively to the nucleus in interphase cells, during metaphase and anaphase it was distributed throughout the cytoplasm and excluded from condensed chromosomes. At telophase PTP-S2 began to associate with chromosomes and at cytokinesis it was associated with chromatin in the newly formed nucleus. It was hyperphosphorylated and showed retarded mobility in cells arrested in metaphase. In vitro experiments showed that it was phosphorylated by CK2 resulting in mobility shift. Using a deletion mutant we found that CK2 phosphorylated PTP-S2 in the C-terminal non-catalytic domain. A heparin sensitive kinase from mitotic cell extracts phosphorylated PTP-S2 resulting in mobility shift. These results are consistent with the suggestion that during metaphase PTP-S2 is phosphorylated (possibly by CK2 or a CK2-like enzyme), resulting in its dissociation from chromatin.


Subject(s)
Amino Acid Sequence , Animals , Casein Kinase II , Catalytic Domain , Cell Line , Cell Nucleus/enzymology , Chromatin/enzymology , Chromosomes/enzymology , Fibroblasts/enzymology , HeLa Cells , Humans , Isoenzymes/metabolism , Microscopy, Confocal , Mitosis , Molecular Sequence Data , Phosphorylation , Protein Tyrosine Phosphatases/metabolism , Protein Serine-Threonine Kinases/metabolism , Rats
3.
Journal of Korean Medical Science ; : 127-135, 1990.
Article in English | WPRIM | ID: wpr-87932

ABSTRACT

Three kinds of apurinic/apyrimidinic (AP) DNA endonuclease, APcI, APcII, APcIII, were purified from rat liver chromatin through 1M KCl extraction, DEAE-trisacryl ion exchange chromatography. Sephadex G-150 gel filtration and AP DNA cellulose affinity chromatography. Activities of the purified APcI, APcII and APcIII were 62.5, 83.3 and 52.0 EU/mg of protein, respectively. Molecular weights of APcI, APcII and APcIII, each consisting of a single polypeptide, were 30,000, 42,000 and 13,000, and isoelectric points of them were 7.2, 6.3 and 6.2, respectively. Three enzymes showed different substrate specificities; APcI acted only on AP DNA, and APcII acted on both AP DNA and UV DNA, while APcIII acted on 3'-methyl-4-monomethylaminoazobenzene (3'-Me MAB) DNA adduct as well as AP DNA and UV DNA. These results indicate that three kinds of AP DNA endonuclease present in rat liver chromatin have structural and functional diversities.


Subject(s)
Animals , Male , Rats , Carcinogens , Chromatin/enzymology , DNA Damage/physiology , DNA-(Apurinic or Apyrimidinic Site) Lyase , Deoxyribonuclease IV (Phage T4-Induced) , Electrophoresis, Polyacrylamide Gel , Endodeoxyribonucleases/isolation & purification , Isoelectric Focusing , Liver/drug effects , Rats, Inbred Strains , Substrate Specificity , p-Dimethylaminoazobenzene
4.
Journal of Korean Medical Science ; : 137-143, 1990.
Article in English | WPRIM | ID: wpr-87931

ABSTRACT

An experiment was designed to investigate the reaction mechanism of AP (apurinic or apyrimidinic) DNA endonucleases (APcI, APcII, APcIII) purified from rat liver chromatin. Sulfhydryl compounds (2-mercaptoethanol, dithiothreitol) brought about optimal activities of AP DNA endonucleases and N-ethylmaleimide or HgCl2 inhibited the enzyme activities, indicating the presence of sulfhydryl group at or near the active sites of the enzymes. Mg2+ was essential and 4mM of Mg2+ was sufficient for the optimal activities of AP DNA endonucleases. Km values of APcI, APcII and APcIII for the substrate (E. coli chromosomal AP DNA) were 0.53, 0.27 and 0.36 microM AP sites, respectively. AMP was the most potent inhibitor among adenine nucleotides tested and the inhibition was uncompetitive with respective to the substrate. The Ki values of APcI, APcII and APcIII were 0.35, 0.54 and 0.41mM, respectively. The degree of nick translation of AP DNAs nicked by APcI, APcII and APcIII with Klenow fragment in the presence and absence of T4 polynucleotide kinase or alkaline phosphatase were the same, suggesting that all 3 AP DNA endonucleases excise the phosphodiester bond of AP DNA strand to release 3-hydroxyl nucleotides and 5-phosphomonoester nucleotides.


Subject(s)
Animals , Rats , Binding Sites , Chromatin/enzymology , DNA Damage/physiology , DNA Repair/physiology , DNA-(Apurinic or Apyrimidinic Site) Lyase , Deoxyribonuclease IV (Phage T4-Induced) , Endodeoxyribonucleases/antagonists & inhibitors , Kinetics , Liver/drug effects , Magnesium/pharmacology , Sulfhydryl Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL